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Uncertainty Analysis and Quantification 

Situation, Problem, and Need 
Model Reduction, Graph Decomposition, and Uncertainty Quantification 
 

High performance buildings are typically designed by fragmented expert teams using processes 
that do not scale up to large market penetration. The integration creates complex, dynamical sys-
tems from components that have been designed, in isolation, for individual high performance 
(i.e. component efficiency) and low cost and seldom consider their robustness to the dynamic 
building environment and use. Once connected into systems the components exhibit time-
dependent, complicated behaviors over wide range of spatial and temporal scales, associated 
with building thermals, air flow, people movement, controls, computer and sensor network traf-
fic, etc., that are difficult to predict and control. The problem is the lack of system-level engineer-
ing design methodologies and tools that enable trading of energy, comfort, safety, and cost ob-
jectives while managing the complexity and  uncertainty that is inherent in multi-scale, intercon-
nected dynamic building systems. Without such a capability, integration of building sub-systems 
will continue on an ad-hoc basis, thus leaving buildings inefficient. 

The challenges of integrating heterogeneous models, managing the complexity caused by multi-
ple time scales and their overlap, and quantifying the effect of uncertainty can be addressed with 
recent advances in model integrated computing and with techniques for model reduction, asyn-
chronous co-simulation and efficient methods of computing uncertainty propagation. The key 
technical innovation is the simulation environment in which performance-based design of highly 
integrated building systems with dynamics and uncertainty can be performed rapidly with do-
main-specific models (such as physics-based models of energy, air, and contaminant flow, dis-
crete-event models of communication networks, and agent-based models of people movement). 
Such tools will enable assessment of network design alternatives to meet reliability, fault toler-
ance and quality of service requirements while ensuring graceful performance degradation.  

Such a capability will allow prediction of system behavior, especially component interactions, 
before the full system is built. New phenomena due to unanticipated component and subsystem 
interconnections can be captured and avoided by careful and rigorous application of modeling. 
This is crucial since sub-scale tests cannot verify robust operation in the presence of component 
variability or changes in operating environment, especially early in the design.  

The effort will involve consideration of a broad range of external input scenarios and dynamics 
(weather, occupancy, indoor environment, energy prices), uncertainty in models and their inputs, 
and an immensely large design space. The program will enable cost-efficient and robust designs 
by addressing the control and communication networks in a building concurrently, and integra-
tion of energy saving control into these networks.  

Model-based design obviously needs computational tools: modeling tools, analysis tools, and 
synthesis tools. These tools are typically expensive to build, and they are highly specialized for 
specific domains (e.g. CFD, dynamic system simulation, model checkers for finite transition sys-
tems, etc.) In a model-based design flow often many domains are involved, and tools are needed 
that address the various design activities. However, these tools need to interoperate because do-
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main models are often interrelated and interdependent. Hence, constructing such design flows 
necessitates the integration of models from different domains, and thus the design tools. 

A further difficulty in the design of complex, heterogeneous systems is the tracking of depend-
encies between models and determining the impact of changes in one model on the other, de-
pendent models. Changes in one domain may have an impact on a model of another domain, in-
validating the other design. Design model management is a complex problem that cuts across 
domains and is very cumbersome to do manually, and infeasible for very large scale systems. 
Building Information Models1  (BIM) is a popular framework being used in the buildings indus-
try by architects, engineers, construction managers to enable accumulation and management of 
facility design and lifecycle information using a variety of models and databases. However, lack 
of consideration of the design flows mentioned above significantly reduces the potential value of 
concurrent design to a fragmented building design and delivery process. 

Yet another complexity arises when many design variations exists for systems or subsystems. An 
engineering process may produce a few alternative design models for each specific (sub-)system, 
but when these are combined in a hierarchical way, the resulting number of possible combina-
tions for a large design is astronomical. Designers need tools that allow managing this complex-
ity in the model design space, and they need rapid facilities for evaluating (possibly optimizing) 
combinations of specific design variants. 

 

Technical Barriers 
This sub-section describes the three major technical barriers. 

Heterogeneous modeling, analysis and design.  The first barrier to accomplishing the proposal 
objectives is the difficulty in integrating heterogeneous models. The models of energy dynamics, 
airflow, building equipment and sensors, occupant movement, and communication networks are 
heterogeneous in that different modeling approaches and languages are used to represent them. 
However, these models are also interrelated and interdependent. State-of-the-art computational 
models take minutes to hours (depending on building scale) to run one energy scenario and en-
ergy performance metrics – yet to do effective and robust design, multiple scenarios would have 
to be evaluated with many uncertain input parameters, and in a large design space involving 
building topology, building equipment, sensor type and placement, and data communication 
network topologies. The building systems and relevant dynamics are defined by a complex inter-
play between a variety of components and sub-systems, with wide and overlapping time and spa-
tial scales. The large time scales (minutes to hours) for the building comfort sensor and HVAC 
equipment elements have been known (Hunn, 1996) and largely responsible for fast-response 
dynamics of buildings being ignored. The multiple time scales issue will also be re-visited in the 
context “complexity and uncertainty” barrier described below. 

The breadth of models includes fluid dynamics of air movement and aerosol/contaminant trans-
port (typically using CFD or reduced order nodal models), possibly including chemical kinetics 
associated with a VOC (volatile organic compound) emission scenario, models of the building 
geometry (CAD tools), weather, HVAC equipment and system performance (typically lumped 
differential algebraic equations), dynamic models of occupant movement (typically agent based 
                                                 
 
1 http://www.facilityinformationcouncil.org/bim/ 
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models), communications network models (stochastic or worst-case models of computation), 
models of the HVAC and building controls (differential equations and finite state logic), and the 
logic describing the HVAC system.  The challenge is not to construct these models separately, 
but to integrate them and establish a common framework and level of abstraction in which the 
design decisions that are today considered separately can be co-designed in a cohesive manner. 

Today designers separate these concerns because of assumed time and length scale separations.  
For example, it is common for the HVAC controls designer to assume the communications net-
work is infinitely fast, and indoor air properties are uniform in a “zone.”  However, with IT net-
work convergence and time scale overlap under plausible threat scenarios, these assumptions 
break down, implying that these heterogeneous models are interrelated and interdependent.   

Complexity and Uncertainty.  Complexity manifests itself in several ways. First, the presence 
of widely separated but coupled time and spatial scales suggest that the models will present nu-
merically stiff equations making rapid simulation infeasible. Given millions of variables and 
equations involved in an airflow calculation, for example, together with several orders of magni-
tudes of separation between the component time scales, obtaining a single steady-state solution 
to evaluate the nominal performance can take days. Similarly, there are a huge number of possi-
ble threat scenarios to consider. Complexity also manifests itself in a very large design space, 
with multiple, interdependent design decisions. Managing this is a technical barrier. Establishing 
a common level of abstraction to facilitate these trade-offs is the key, central challenge.    

A common approach for the analysis of large interconnected dynamic networks is to assemble 
the network model from component models as a large monolithic set of nonlinear dynamic equa-
tions. However, in the process the structure of the system (at this level of abstraction) is de-
stroyed or at least ignored.  But it is precisely this structure that can be exploited to accelerate 
computation time and enable analyses such as model reduction and uncertainty propagation that 
is central to our technical approach. 

Uncertainty is pervasive in the problems we consider.  Uncertainty is associated with the scenar-
ios, boundary conditions, external factors, equipment performance, and the models themselves, 
which often must be simplified for computational reasons in ways that introduces uncertainty.   
(A good example of this is so-called nodal models of airflow in buildings.)  To quantify the ef-
fects of uncertainty, models need to be simulated using probabilistic methods that describe af-
fects of uncertainty of inputs (e.g. model uncertainty in network traffic, physics, and human be-
havior) and its effect on model outputs. However, traditional Monte-Carlo methods 
\cite{fishman1995} are infeasible in light of the complexity and breadth of these problems and 
could take years to simulate even if parallel computations are utilized. The analysis and robust 
design methods for large nonlinear dynamical systems are not yet well developed. This kind of 
analysis then represents a considerable technical barrier to our objective. 

 

Proposed Approach 
To overcome the above mentioned barriers, we propose addressing the model complexity and 
uncertainty issues including model reduction and uncertainty propagation techniques. The mod-
els (functional and non-functional) will span different domains (languages as well as tools), 
which is resolved using a model integration methodology mentioned in Section [Michael Wetter].  



CONFIDENTIAL 
Draft 

LBNL, United Technologies Research Center, UCB, UCSB 
Proprietary Information.  Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this proposal. 
Not for distribution without permission of Arun Majumdar (LBNL) and Clas Jacobson (UTC) 
 

4

• Energy dynamics models can be described by discretized partial differential equations (i.e. 
a set of coupled nonlinear ordinary differential equations) and tools such as Energy Plus, 
Matlab/Simulink or Dymola will be used to describe these. 

• Airflow dynamics model can be obtained by Galerkin projection of Navier-Stokes or 
Businesq models onto reduced set of modes (POD is one option) and represented in Mat-
lab/Simulink or Dymola.  

The Model Management engine is the module that facilitates the integration of the different do-
mains and has to assure that the correct properties are maintained across domain boundaries. 
This can be done either through mapping the domains to a common (semantic) domain or 
through co-simulation where this model now fulfills the role of translator during run-time. 

As an outcome of the model management module are several “analysis” tools. All these tools 
operate at the system level and hence will provide methods to quantify the system behavior, in-
cluding situation where there is tight coupling, e.g. through time-scales.  The analysis tools in-
clude the following: 

• Simulation engine. This will provide a high accuracy simulation of the integrated system. 
This simulation can be used to validate the levels of abstraction that are chosen during the 
modeling phase, as well as provide a mechanism for trade studies to investigate the effect 
of parametric changes (e.g. physical layer, network speed, network protocol, routing or 
connectivity changes, traffic from other sources) 

• Analysis engine. This will provide a formal framework to determine specific system level 
properties without the need for Monte Carlo simulation of the entire system.  

 

Enablers 

 

Robust Uncertainty Management methods and tools 
In addressing complexity and uncertainty, a number of important foundational approaches and 
tools for the problem of analyzing and designing dynamic systems robust to uncertainty were 
developed under DARPA-DSO funding (F49620-03-C-0035 and FA9550-07-C-0024). This 
work created a novel approach to analysis, simulations, and design of robust dynamic systems by 
exploiting rather than ignoring the relative time scale differences of component dynamics as well 
as the interconnection structure. For example, it was demonstrated that one is able to design sys-
tems that develop coherent structures when it is important to mitigate uncertainty through dy-
namics. The approaches developed with this DARPA funding will be extended and applied to 
complex models for energy and airflow transport, and for building phenomena models such as 
for people occupancy dynamics. Application of these methods to moderate complexity problems, 
involving 40000 states are already in progress for molecular dynamics problems and will be 
demonstrated by September 2008. 

Reduced Order Models for Building Dynamics 

The integration of building systems is creating large, complex, dynamic, inter-connected sys-
tems.  The models will capture these characteristics of building physics, equipment and sensors, 
and communication networks. Recently, UTRC has investigated and developed the following 
types of models for building system and dynamic phenomena encountered in buildings: building 
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topology models; building occupant models; air transport and smoke propagation models; build-
ing security system models; models of real-time situational awareness systems involving infor-
mation fusion from sensor infrastructure belonging to the security and life safety systems; and 
system level dynamic models of HVAC, building energy flow and control systems. Some of the 
relevant models are described briefly below. 

Building occupant models: The state-of-the-art in traffic simulation is “agent-based models”. 
These fine-grained models (see example in 2-floor building in Figure 1.1.6) can be used to com-
pute the motion of individual occupants using parameters that dictate the source and destination 
of the occupants, their speed and behavior (such as in the vicinity of other occupants). These 
simulations can be accurate with careful choice of the parameters but have very poor scaling 
properties: the computations scale as N2 (N – number of agents). For large buildings and com-
plexes, the problem of simulating occupant motion can become computationally intractable. The 
UTRC team in collaboration with researchers in University of California (Santa Barbara) and 
University of Illinois (Urbana-Champaign) developed a novel approach to represent the agent 
dynamics on a graph and utilized graph decomposition methods (described later) to extract re-
duced-order models by identifying weakly coupled sub-systems in the graph. The resulting mod-
els (such as illustrated with a 5-node graph in Figure 1.1.6) can be computed much faster and are 
scalable, making them suited to use in design (such as proposed for the proposed effort) and even 
during building operations. 

 
Figure. Building occupant dynamics, showing fine-grained agent based models at the left, graph-based repre-

sentation of dynamics in the center, and “coarsened” representation on the right. 

Building air and contaminant transport models 

The state-of-the-art in airflow modeling is “computational fluid dynamics” (CFD). These simula-
tions are used to simulate the evolution of airflow and other contaminants transported by airflow 
by discretizing the Navier Stokes or Businesq nonlinear partial differential equations on a fine 
grid (see example of smoke propagation dynamics during a fire breakout in a building in Figure 
1.1.7). The simulations can be accurate but are computationally intensive due to the detailed dis-
cretization required. A 2 minute long simulation of smoke propagation from a fire in a small (2-
floor) building shown in Figure 1.1.7 can take up to 2 days to run on a state-of-the-art work-
station using best available commercial software (e.g., Fluent2). The UTRC team has developed 
an innovative approach to simulating threat propagation, capable of running 3 orders of magni-
tude faster that the fine-grained simulations (see illustration in Figure 1.1.7), making them suited 
to design iterations (needed for the proposed effort). 

                                                 
 
2 http://www.fluent.com/ 
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Figure. Smoke threat propagation dynamics modeled using detailed simulation methodology on left and 

UTRC model on the right showing coarser representation but with much faster computational turnaround. 

 

Two problems arise when such diverse, static, dynamic, spatially distributed, continuous and dis-
crete models are integrated: 1) the coupled simulation and analysis of these models becomes ex-
tremely computational complex, 2) the appropriate technique for propagation of uncertainty from 
input parameters to output metrics is not known. 

To address these problems, UTRC will leverage technology being developed under the DARPA 
contract “Dynamic Network Analysis for Robust Uncertainty Management,” for building sys-
tems. The essence of the approach is the following: a large system or network of dynamical 
components is decomposed into components using spectral graph theory (Varigonda et al. 2004). 
Operator theory and geometric dynamics methods are used to reduce component models and 
analyze propagation of probability measures in components. 

Model reduction 
 
We will begin with the choice of spatial coarse variables and then compute a temporal evolution 
operator for the coarse variables (Froyland 2001). The choice of coarse variables shall include 
the scales that determine the metric of performance of the building and the scales that couple 
with other components (Mehta et al. 2006). The coarse variables shall be determined by physical 
considerations or by post-processing data from resolved simulations (Holmes et al. 1996) and 
diffusion coordinates (Coifman et al. 2004, Lafon 2004, Coifman 2004). Reduced order model of 
temporal dynamics for airflow and energy can be extracted by analytic Galerkin projection of 
equations of motion (Holmes et al. 1996) onto modes (POD, sensitivity, etc.) while reduced or-
der description of occupancy dynamics can be accomplished by extraction of Markov Models 
(Froyland 2001) from simulations of agent-based models (if available). Moreover, coarse tempo-
ral integration (Equation-Free) methods (Xiu et al. 2002) shall be used to simulate slow variables 
in the components of multiscale simulations. Parametric low order ODEs can be then obtained 
by system identification techniques. These shall in turn be used to complete the reduced-order 
models for the building occupant motion and airflow transport for state estimation and Model-
Predictive Control.    
 

Graph Decomposition 
The main objectives in this section approach are to: (i) develop a mathematical framework based 
on Markov chains for obtaining and translating between hierarchical spatial scales (from fine to 
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coarse) for the building domain models; (ii) implement a computational tool for constructing 
Markov chains on graph from the problem description using numerically efficient set-oriented 
methods; (iii) demonstrate multilevel graph partitioning algorithms based on spectral analysis of 
Markov chains: (iv) obtain consistent (across scales) reduced order building domain models; and 
(v) relate the spatial decomposition to analysis timescales (performance quantification). 

To illustrate the use of graph decomposition based analytical techniques for model reduction a 
transport phenomenon relevant to building fire safety is discussed. Such phenomena are modeled 
by a convection diffusion partial differential equation. The proposed approach recasts the trans-
port dynamics from this nonlinear partial differential equation as a Markov chain on graphs (Fig-
ure 1.1.9 illustrates the idea). At the finest scale, the graph is a representation of the high-fidelity 
CFD simulation with nodes representing the CFD grid, and the arrows representing the transport 
between nodes. At the coarsest scale (and large times), the entire building is represented as a sin-
gle node capturing the fact that any initial condition in concentration will diffuse uniformly. The 
contaminant concentration is represented as a distribution over nodes of the graph. Dynamics is 
represented as time evolution of uncertainty in initial condition, propagated by a Markov chain. 

 
Figure. Airflow dynamics modeling problem transformed into a Markov chain on graph. (b) Spectral analysis 

of the Markov chain to obtain a multi-scale decomposition of the graph and associated dynamics 

To demonstrate the approach, a simple, symmetric problem of two interconnected rooms in a 
building with a two-dimensional heterogeneous velocity field and homogeneous diffusivity is 
considered (Mehta et al. 2006). The initial complex graph was taken to be over a 10x10 compu-
tational grid for each room for a total of 200 graph nodes. The spectrum of the Markov chain, 
shown in Figure below, is expected to be typical to many Markov chains arising in building ap-
plications (e.g. for occupant motion, energy and comfort network models). The presence of rela-
tively few dominant eigenvalues implies that a graph with fewer nodes is in fact sufficient to de-
scribe the dynamics, providing a methodology for model reduction.  The corresponding eigen-
functions can be used to separate (and evaluate separately, speeding up computations) the build-
ing regions that interact on different timescales.  
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Figure. Example building two-room problem results: a) convection-diffusion problem defined over a 200-

node computational domain, b) spectrum of Markov chain, and c) reduced-order 2-node graph obtained us-
ing the 2nd eigenfunction of the Markov chain. 

Efficient Quantification of Uncertainty 
Once system decomposition into subcomponents has been achieved, efficient methods for Uncer-
tainty Quantification in such sub-components (Varigonda et al. 2004) will be used. Several op-
tions for the choice of stochastic basis including Polynomial Chaos expansion \cite{ wie-
ner1938} with coefficients fitted using evaluating using the Collocation method \cite{ xiu2005c, 
xiu2002, xiu2007, loeven2007, prempraneerach2007, wan2005}, or Stochastic Finite Element 
methods \cite{ghanem1991, lovett2004, }, Stochastic Response Surface \cite{isukapalli1999 }, 
and equation-free \cite{xiu2005, xiu2005b} Uncertainty Quantification methods, and Quasi MC 
methods (Analytical Systems Engineering, DARPA final report, […]) will be pursued. Depend-
ing on the required accuracy of approximation of the mean and variance (or higher stochastic 
moments), these methods typically offer several orders of magnitude acceleration over Monte 
Carlo.  

The action of the uncertainty propagation for the models of interconnected homogeneous or het-
erogeneous components will be done by iterative procedures using Wave-Form Relaxation tech-
niques. The Jacobian Graph decomposition technique (Varigonda et al. 2004) shall be used to 
identify weak connections in the system. Iterative, multi-scale methods for interconnected sys-
tem simulation using graph decomposition and asynchronous co-simulation, and uncertainty 
quantification (Varigonda 2004) based on Wave-Form Relaxation (Lelarasmee et al. 1982) and 
Multi-Grid methods (Brandt 2001) shall be implemented. Prior work (Varigonda 2004) has 
proved the point-wise convergence of the iterative procedure used in the density mapping 
method (Huzmezan & Kalmar-Nagy 2004).  
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